Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Projected warming disrupts the synchrony of riparian seed release and snowmelt streamflow.

Identifieur interne : 000175 ( Main/Exploration ); précédent : 000174; suivant : 000176

Projected warming disrupts the synchrony of riparian seed release and snowmelt streamflow.

Auteurs : Laura G. Perry [États-Unis] ; Patrick B. Shafroth [États-Unis] ; Lauren E. Hay [États-Unis] ; Steven L. Markstrom [États-Unis] ; Andrew R. Bock [États-Unis]

Source :

RBID : pubmed:31514239

Abstract

Globally, spring phenology and abiotic processes are shifting earlier with warming. Differences in the magnitudes of these shifts may decouple the timing of plant resource requirements from resource availability. In riparian forests across the northern hemisphere, warming could decouple seed release from snowmelt peak streamflow, thus reducing moisture and safe sites for dominant tree recruitment. We combined field observations with climate, hydrology, and phenology models to simulate future change in synchrony of seed release and snowmelt peaks in the South Platte River Basin, Colorado, for three Salicaceae species that dominate western USA riparian forests. Chilling requirements for overcoming winter endodormancy were strongest in Salix exigua, moderately supported for Populus deltoides, and indiscernible in Salix amygdaloides. Ensemble mean projected warming of 3.5°C shifted snowmelt peaks 10-19 d earlier relative to S. exigua and P. deltoides seed release, because decreased winter chilling combined with increased spring forcing limited change in their phenology. By contrast, warming shifted both snowmelt peaks and S. amygdaloides seed release 21 d earlier, maintaining their synchrony. Decoupling of snowmelt from seed release for Salicaceae with strong chilling requirements is likely to reduce resources critical for recruitment of these foundational riparian forests, although the magnitude of future decoupling remains uncertain.

DOI: 10.1111/nph.16191
PubMed: 31514239


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Projected warming disrupts the synchrony of riparian seed release and snowmelt streamflow.</title>
<author>
<name sortKey="Perry, Laura G" sort="Perry, Laura G" uniqKey="Perry L" first="Laura G" last="Perry">Laura G. Perry</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Colorado State University, Fort Collins, CO, 80523</wicri:regionArea>
<wicri:noRegion>80523</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>in cooperation with, US Geological Survey Fort Collins Science Center, Fort Collins, CO, 80526, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>in cooperation with, US Geological Survey Fort Collins Science Center, Fort Collins, CO, 80526</wicri:regionArea>
<wicri:noRegion>80526</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shafroth, Patrick B" sort="Shafroth, Patrick B" uniqKey="Shafroth P" first="Patrick B" last="Shafroth">Patrick B. Shafroth</name>
<affiliation wicri:level="1">
<nlm:affiliation>in cooperation with, US Geological Survey Fort Collins Science Center, Fort Collins, CO, 80526, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>in cooperation with, US Geological Survey Fort Collins Science Center, Fort Collins, CO, 80526</wicri:regionArea>
<wicri:noRegion>80526</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hay, Lauren E" sort="Hay, Lauren E" uniqKey="Hay L" first="Lauren E" last="Hay">Lauren E. Hay</name>
<affiliation wicri:level="1">
<nlm:affiliation>US Geological Survey Water Mission Area, Denver Federal Center, Lakewood, CO, 80225, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>US Geological Survey Water Mission Area, Denver Federal Center, Lakewood, CO, 80225</wicri:regionArea>
<wicri:noRegion>80225</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Markstrom, Steven L" sort="Markstrom, Steven L" uniqKey="Markstrom S" first="Steven L" last="Markstrom">Steven L. Markstrom</name>
<affiliation wicri:level="1">
<nlm:affiliation>US Geological Survey Water Mission Area, Denver Federal Center, Lakewood, CO, 80225, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>US Geological Survey Water Mission Area, Denver Federal Center, Lakewood, CO, 80225</wicri:regionArea>
<wicri:noRegion>80225</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bock, Andrew R" sort="Bock, Andrew R" uniqKey="Bock A" first="Andrew R" last="Bock">Andrew R. Bock</name>
<affiliation wicri:level="1">
<nlm:affiliation>US Geological Survey Colorado Water Science Center, Denver Federal Center, Lakewood, CO, 80225, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>US Geological Survey Colorado Water Science Center, Denver Federal Center, Lakewood, CO, 80225</wicri:regionArea>
<wicri:noRegion>80225</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31514239</idno>
<idno type="pmid">31514239</idno>
<idno type="doi">10.1111/nph.16191</idno>
<idno type="wicri:Area/Main/Corpus">000713</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000713</idno>
<idno type="wicri:Area/Main/Curation">000713</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000713</idno>
<idno type="wicri:Area/Main/Exploration">000713</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Projected warming disrupts the synchrony of riparian seed release and snowmelt streamflow.</title>
<author>
<name sortKey="Perry, Laura G" sort="Perry, Laura G" uniqKey="Perry L" first="Laura G" last="Perry">Laura G. Perry</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Colorado State University, Fort Collins, CO, 80523</wicri:regionArea>
<wicri:noRegion>80523</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>in cooperation with, US Geological Survey Fort Collins Science Center, Fort Collins, CO, 80526, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>in cooperation with, US Geological Survey Fort Collins Science Center, Fort Collins, CO, 80526</wicri:regionArea>
<wicri:noRegion>80526</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shafroth, Patrick B" sort="Shafroth, Patrick B" uniqKey="Shafroth P" first="Patrick B" last="Shafroth">Patrick B. Shafroth</name>
<affiliation wicri:level="1">
<nlm:affiliation>in cooperation with, US Geological Survey Fort Collins Science Center, Fort Collins, CO, 80526, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>in cooperation with, US Geological Survey Fort Collins Science Center, Fort Collins, CO, 80526</wicri:regionArea>
<wicri:noRegion>80526</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hay, Lauren E" sort="Hay, Lauren E" uniqKey="Hay L" first="Lauren E" last="Hay">Lauren E. Hay</name>
<affiliation wicri:level="1">
<nlm:affiliation>US Geological Survey Water Mission Area, Denver Federal Center, Lakewood, CO, 80225, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>US Geological Survey Water Mission Area, Denver Federal Center, Lakewood, CO, 80225</wicri:regionArea>
<wicri:noRegion>80225</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Markstrom, Steven L" sort="Markstrom, Steven L" uniqKey="Markstrom S" first="Steven L" last="Markstrom">Steven L. Markstrom</name>
<affiliation wicri:level="1">
<nlm:affiliation>US Geological Survey Water Mission Area, Denver Federal Center, Lakewood, CO, 80225, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>US Geological Survey Water Mission Area, Denver Federal Center, Lakewood, CO, 80225</wicri:regionArea>
<wicri:noRegion>80225</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bock, Andrew R" sort="Bock, Andrew R" uniqKey="Bock A" first="Andrew R" last="Bock">Andrew R. Bock</name>
<affiliation wicri:level="1">
<nlm:affiliation>US Geological Survey Colorado Water Science Center, Denver Federal Center, Lakewood, CO, 80225, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>US Geological Survey Colorado Water Science Center, Denver Federal Center, Lakewood, CO, 80225</wicri:regionArea>
<wicri:noRegion>80225</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The New phytologist</title>
<idno type="eISSN">1469-8137</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Globally, spring phenology and abiotic processes are shifting earlier with warming. Differences in the magnitudes of these shifts may decouple the timing of plant resource requirements from resource availability. In riparian forests across the northern hemisphere, warming could decouple seed release from snowmelt peak streamflow, thus reducing moisture and safe sites for dominant tree recruitment. We combined field observations with climate, hydrology, and phenology models to simulate future change in synchrony of seed release and snowmelt peaks in the South Platte River Basin, Colorado, for three Salicaceae species that dominate western USA riparian forests. Chilling requirements for overcoming winter endodormancy were strongest in Salix exigua, moderately supported for Populus deltoides, and indiscernible in Salix amygdaloides. Ensemble mean projected warming of 3.5°C shifted snowmelt peaks 10-19 d earlier relative to S. exigua and P. deltoides seed release, because decreased winter chilling combined with increased spring forcing limited change in their phenology. By contrast, warming shifted both snowmelt peaks and S. amygdaloides seed release 21 d earlier, maintaining their synchrony. Decoupling of snowmelt from seed release for Salicaceae with strong chilling requirements is likely to reduce resources critical for recruitment of these foundational riparian forests, although the magnitude of future decoupling remains uncertain.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">31514239</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1469-8137</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>225</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2020</Year>
<Month>01</Month>
</PubDate>
</JournalIssue>
<Title>The New phytologist</Title>
<ISOAbbreviation>New Phytol</ISOAbbreviation>
</Journal>
<ArticleTitle>Projected warming disrupts the synchrony of riparian seed release and snowmelt streamflow.</ArticleTitle>
<Pagination>
<MedlinePgn>693-712</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/nph.16191</ELocationID>
<Abstract>
<AbstractText>Globally, spring phenology and abiotic processes are shifting earlier with warming. Differences in the magnitudes of these shifts may decouple the timing of plant resource requirements from resource availability. In riparian forests across the northern hemisphere, warming could decouple seed release from snowmelt peak streamflow, thus reducing moisture and safe sites for dominant tree recruitment. We combined field observations with climate, hydrology, and phenology models to simulate future change in synchrony of seed release and snowmelt peaks in the South Platte River Basin, Colorado, for three Salicaceae species that dominate western USA riparian forests. Chilling requirements for overcoming winter endodormancy were strongest in Salix exigua, moderately supported for Populus deltoides, and indiscernible in Salix amygdaloides. Ensemble mean projected warming of 3.5°C shifted snowmelt peaks 10-19 d earlier relative to S. exigua and P. deltoides seed release, because decreased winter chilling combined with increased spring forcing limited change in their phenology. By contrast, warming shifted both snowmelt peaks and S. amygdaloides seed release 21 d earlier, maintaining their synchrony. Decoupling of snowmelt from seed release for Salicaceae with strong chilling requirements is likely to reduce resources critical for recruitment of these foundational riparian forests, although the magnitude of future decoupling remains uncertain.</AbstractText>
<CopyrightInformation>No claim to US Government works New Phytologist © 2019 New Phytologist Trust.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Perry</LastName>
<ForeName>Laura G</ForeName>
<Initials>LG</Initials>
<Identifier Source="ORCID">0000-0003-2796-868X</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>in cooperation with, US Geological Survey Fort Collins Science Center, Fort Collins, CO, 80526, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shafroth</LastName>
<ForeName>Patrick B</ForeName>
<Initials>PB</Initials>
<Identifier Source="ORCID">0000-0002-6064-871X</Identifier>
<AffiliationInfo>
<Affiliation>in cooperation with, US Geological Survey Fort Collins Science Center, Fort Collins, CO, 80526, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hay</LastName>
<ForeName>Lauren E</ForeName>
<Initials>LE</Initials>
<Identifier Source="ORCID">0000-0003-3763-4595</Identifier>
<AffiliationInfo>
<Affiliation>US Geological Survey Water Mission Area, Denver Federal Center, Lakewood, CO, 80225, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Markstrom</LastName>
<ForeName>Steven L</ForeName>
<Initials>SL</Initials>
<Identifier Source="ORCID">0000-0001-7630-9547</Identifier>
<AffiliationInfo>
<Affiliation>US Geological Survey Water Mission Area, Denver Federal Center, Lakewood, CO, 80225, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bock</LastName>
<ForeName>Andrew R</ForeName>
<Initials>AR</Initials>
<Identifier Source="ORCID">0000-0001-7222-6613</Identifier>
<AffiliationInfo>
<Affiliation>US Geological Survey Colorado Water Science Center, Denver Federal Center, Lakewood, CO, 80225, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>10</Month>
<Day>25</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>New Phytol</MedlineTA>
<NlmUniqueID>9882884</NlmUniqueID>
<ISSNLinking>0028-646X</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">chilling requirements</Keyword>
<Keyword MajorTopicYN="Y">cottonwood</Keyword>
<Keyword MajorTopicYN="Y">future climate projections</Keyword>
<Keyword MajorTopicYN="Y">phenological decoupling</Keyword>
<Keyword MajorTopicYN="Y">riparian forest ecology</Keyword>
<Keyword MajorTopicYN="Y">seed release phenology</Keyword>
<Keyword MajorTopicYN="Y">streamflow timing</Keyword>
<Keyword MajorTopicYN="Y">willow</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>05</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>08</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>9</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>9</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>9</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31514239</ArticleId>
<ArticleId IdType="doi">10.1111/nph.16191</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>References</Title>
<Reference>
<Citation>Acharya A, Piechota TC, Tootle G. 2012. Quantitative assessment of climate change impacts on the hydrology of the North Platte River watershed, Wyoming. Journal of Hydrologic Engineering 17: 1071-1083.</Citation>
</Reference>
<Reference>
<Citation>Ahn C, Moser KF, Sparks RE, White DC. 2007. Developing a dynamic model to predict the recruitment and early survival of black willow (Salix nigra) in response to different hydrologic conditions. Ecological Modelling 204: 315-325.</Citation>
</Reference>
<Reference>
<Citation>Amlin NM, Rood SB. 2002. Comparative tolerances of riparian willows and cottonwoods to water-table decline. Wetlands 22: 338-346.</Citation>
</Reference>
<Reference>
<Citation>Asse D, Chuine I, Vitasse Y, Yoccoz NG, Delpierre N, Badeau V, Delestrade A, Randin CF. 2018. Warmer winters reduce the advance of tree spring phenology induced by warmer springs in the Alps. Agricultural and Forest Meteorology 252: 220-230.</Citation>
</Reference>
<Reference>
<Citation>Auble GT, Scott ML. 1998. Fluvial disturbance patches and cottonwood recruitment along the upper Missouri River, Montana. Wetlands 18: 546-556.</Citation>
</Reference>
<Reference>
<Citation>Augspurger CK. 2009. Spring 2007 warmth and frost: phenology, damage and refoliation in a temperate deciduous forest. Functional Ecology 23: 1031-1039.</Citation>
</Reference>
<Reference>
<Citation>Barnett TP, Pierce DW, Hidalgo HG, Bonfils C, Santer BD, Das T, Bala G, Wood AW, Nozawa T, Mirin AA et al. 2008. Human-induced changes in the hydrology of the western United States. Science 319: 1080-1083.</Citation>
</Reference>
<Reference>
<Citation>Beaubien E, Hamann A. 2011. Spring flowering response to climate change between 1936 and 2006 in Alberta, Canada. BioScience 61: 514-524.</Citation>
</Reference>
<Reference>
<Citation>Bloschl G, Hall J, Parajka J, Perdigao RAP, Merz B, Arheimer B, Aronica GT, Bilibashi A, Bonacci O, Borga M et al. 2017. Changing climate shifts timing of European floods. Science 357: 588-590.</Citation>
</Reference>
<Reference>
<Citation>Bottollier-Curtet M, Charcosset JY, Poly F, Planty-Tabacchi AM, Tabacchi E. 2012. Light interception principally drives the understory response to boxelder invasion in riparian forests. Biological Invasions 14: 1445-1458.</Citation>
</Reference>
<Reference>
<Citation>Bourgeois B, Gonzalez E. 2019. Pulses of seed release in riparian Salicaceae coincide with high atmospheric temperature and low relative humidity. River Research and Appliations. doi: 10.1002/rra.3505.</Citation>
</Reference>
<Reference>
<Citation>Bradley CE, Smith DG. 1986. Plains cottonwood recruitment and survival on a prairie meandering river floodplain, Milk River, southern Alberta and northern Montana. Canadian Journal of Botany 64: 1433-1442.</Citation>
</Reference>
<Reference>
<Citation>Burnham KP, Anderson DR. 2002. Model selection and multimodel inference: a practical information-theoretic approach. New York, NY, USA: Springer-Verlag.</Citation>
</Reference>
<Reference>
<Citation>Caffarra A, Donnelly A, Chuine I. 2011. Modelling the timing of Betula pubescens budburst. II. Integrating complex effects of photoperiod into process-based models. Climate Research 46: 159-170.</Citation>
</Reference>
<Reference>
<Citation>Capon SJ, Chambers LE, Mac Nally R, Naiman RJ, Davies P, Marshall N, Pittock J, Reid M, Capon T, Douglas M et al. 2013. Riparian ecosystems in the 21st century: hotspots for climate change adaptation? Ecosystems 16: 359-381.</Citation>
</Reference>
<Reference>
<Citation>Chambers LE, Altwegg R, Barbraud C, Barnard P, Beaumont LJ, Crawford RJM, Durant JM, Hughes L, Keatley MR, Low M et al. 2013. Phenological changes in the Southern Hemisphere. PLoS ONE 8: e75514.</Citation>
</Reference>
<Reference>
<Citation>Chandler JW, Thielges BA. 1973. Chilling and photoperiod affect dormancy of cottonwood cuttings. Proceedings: twelfth southern forest tree improvement conference, Baton Rouge, Louisiana, June 12-13, 1973. Louisiana State University, Division of Continuing Education/Southern Forest Experiment Station, USDA Forest Service: Baton Rouge, LA, USA/New Orleans, LA, USA 12: 200-205.</Citation>
</Reference>
<Reference>
<Citation>Chen HP, Sun JQ, Chen XL. 2014. Projection and uncertainty analysis of global precipitation-related extremes using CMIP5 models. International Journal of Climatology 34: 2730-2748.</Citation>
</Reference>
<Reference>
<Citation>Christensen NS, Lettenmaier DP. 2007. A multimodel ensemble approach to assessment of climate change impacts on the hydrology and water resources of the Colorado River Basin. Hydrology and Earth System Sciences 11: 1417-1434.</Citation>
</Reference>
<Reference>
<Citation>Chuine I. 2000. A unified model for budburst of trees. Journal of Theoretical Biology 207: 337-347.</Citation>
</Reference>
<Reference>
<Citation>Chuine I, de Cortazar Garcia, Atauri I, Kramer K, Hänninen H. 2013. Plant development models. In: Schwarz MD, ed. Phenology: an integrative environmental science. Dordrecht, the Netherlands: Springer, 275-293.</Citation>
</Reference>
<Reference>
<Citation>Clow DW. 2010. Changes in the timing of snowmelt and streamflow in Colorado: a response to recent warming. Journal of Climate 23: 2293-2306.</Citation>
</Reference>
<Reference>
<Citation>Cook BI, Wolkovich EM, Parmesan C. 2012. Divergent responses to spring and winter warming drive community level flowering trends. Proceedings of the National Academy of Sciences, USA 109: 9000-9005.</Citation>
</Reference>
<Reference>
<Citation>Cooper DJ, Andersen DC, Chimner RA. 2003. Multiple pathways for woody plant establishment on floodplains at local to regional scales. Journal of Ecology 91: 182-196.</Citation>
</Reference>
<Reference>
<Citation>Cordes LD, Hughes FMR, Getty M. 1997. Factors affecting the regeneration and distribution of riparian woodlands along a northern prairie river: the Red Deer River, Alberta, Canada. Journal of Biogeography 24: 675-695.</Citation>
</Reference>
<Reference>
<Citation>Dixon MD. 2003. Effects of flow pattern on riparian seedling recruitment on sandbars in the Wisconsin River, Wisconsin, USA. Wetlands 23: 125-139.</Citation>
</Reference>
<Reference>
<Citation>Dudley RW, Hodgkins GA, McHale MR, Kolian MJ, Renard B. 2017. Trends in snowmelt-related streamflow timing in the conterminous United States. Journal of Hydrology 547: 208-221.</Citation>
</Reference>
<Reference>
<Citation>Eckenwalder JE. 1984. Natural intersectional hybridization between North American species of Populus (Salicaceae) in sections Aigeiros and Tacamahaca. II. Taxonomy. Canadian Journal of Botany 62: 325-335.</Citation>
</Reference>
<Reference>
<Citation>Erez A. 2000. Bud dormancy; phenomenon, problems and solutions in the tropics and subtropics. In: Erez A, ed. Temperate fruit crops in warm climates. Dordrecht, the Netherlands: Kluwer Academic Publishers, 17-48.</Citation>
</Reference>
<Reference>
<Citation>Evans LM, Kaluthota S, Pearce DW, Allan GJ, Floate K, Rood SB, Whitham TG. 2016. Bud phenology and growth are subject to divergent selection across a latitudinal gradient in Populus angustifolia and impact adaptation across the distributional range and associated arthropods. Ecology and Evolution 6: 4565-4581.</Citation>
</Reference>
<Reference>
<Citation>Everitt BL. 1968. Use of the cottonwood in an investigation of the recent history of a flood plain. American Journal of Science 266: 417-439.</Citation>
</Reference>
<Reference>
<Citation>Farmer RE. 1964. Cottonwood flowering as related to cold requirement of flower buds. Forest Science 10: 296-299.</Citation>
</Reference>
<Reference>
<Citation>Ficklin DL, Letsinger SL, Stewart IT, Maurer EP. 2016. Assessing differences in snowmelt-dependent hydrologic projections using CMIP3 and CMIP5 climate forcing data for the western United States. Hydrology Research 47: 483-500.</Citation>
</Reference>
<Reference>
<Citation>Fischer DG, Wimp GM, Hersch-Green E, Bangert RK, Leroy CJ, Bailey JK, Schweitzer JA, Dirks C, Hart SC, Allan GJ et al. 2017. Tree genetics strongly affect forest productivity, but intraspecific diversity-productivity relationships do not. Functional Ecology 31: 520-529.</Citation>
</Reference>
<Reference>
<Citation>Flynn DFB, Wolkovich EM. 2018. Temperature and photoperiod drive spring phenology across all species in a temperate forest community. New Phytologist 219: 1353-1362.</Citation>
</Reference>
<Reference>
<Citation>Ford KR, Harrington CA, Bansal S, Gould PJ, St Clair JB. 2016. Will changes in phenology track climate change? A study of growth initiation timing in coast Douglas-fir. Global Change Biology 22: 3712-3723.</Citation>
</Reference>
<Reference>
<Citation>Friedman JM, Auble GT, Shafroth PB, Scott ML, Merigliano MF, Preehling MD, Griffin EK. 2005. Dominance of non-native riparian trees in western USA. Biological Invasions 7: 747-751.</Citation>
</Reference>
<Reference>
<Citation>Friedman JM, Osterkamp WR, Lewis WM. 1996. Channel narrowing and vegetation development following a Great Plains flood. Ecology 77: 2167-2181.</Citation>
</Reference>
<Reference>
<Citation>Fu YSH, Zhao HF, Piao SL, Peaucelle M, Peng SS, Zhou GY, Ciais P, Huang MT, Menzel A, Uelas JP et al. 2015. Declining global warming effects on the phenology of spring leaf unfolding. Nature 526: 104-107.</Citation>
</Reference>
<Reference>
<Citation>Gage EA, Cooper DJ. 2005. Patterns of willow seed dispersal, seed entrapment, and seedling establishment in a heavily browsed montane riparian ecosystem. Canadian Journal of Botany 83: 678-687.</Citation>
</Reference>
<Reference>
<Citation>Garssen AG, Verhoeven JTA, Soons MB. 2014. Effects of climate-induced increases in summer drought on riparian plant species: a meta-analysis. Freshwater Biology 59: 1052-1063.</Citation>
</Reference>
<Reference>
<Citation>Gauzere J, Delzon S, Davi H, Bonhomme M, de Cortazar-Atauri IG, Chuine I. 2017. Integrating interactive effects of chilling and photoperiod in phenological process-based models. A case study with two European tree species: Fagus sylvatica and Quercus petraea. Agricultural and Forest Meteorology 244: 9-20.</Citation>
</Reference>
<Reference>
<Citation>Ge QS, Wang HJ, Rutishauser T, Dai JH. 2015. Phenological response to climate change in China: a meta-analysis. Global Change Biology 21: 265-274.</Citation>
</Reference>
<Reference>
<Citation>Gonzalez E, Bourgeois B, Masip A, Sher AA. 2016. Trade-offs in seed dispersal strategies across riparian trees: the how matters as much as the when. River Research and Applications 32: 786-794.</Citation>
</Reference>
<Reference>
<Citation>Grady KC, Kolb TE, Ikeda DH, Whitham TG. 2015. A bridge too far: cold and pathogen constraints to assisted migration of riparian forests. Restoration Ecology 23: 811-820.</Citation>
</Reference>
<Reference>
<Citation>Haddeland I, Heinke J, Biemans H, Eisner S, Florke M, Hanasaki N, Konzmann M, Ludwig F, Masaki Y, Schewe J et al. 2014. Global water resources affected by human interventions and climate change. Proceedings of the National Academy of Sciences, USA 111: 3251-3256.</Citation>
</Reference>
<Reference>
<Citation>Harner MJ, Crenshaw CL, Abelho M, Stursova M, Shah JJF, Sinsabaugh RL. 2009. Decomposition of leaf litter from a native tree and an actinorhizal invasive across riparian habitats. Ecological Applications 19: 1135-1146.</Citation>
</Reference>
<Reference>
<Citation>Hay LE, Markstrom SL, Ward-Garrison C. 2011. Watershed-scale response to climate change through the twenty-first century for selected basins across the United States. Earth Interactions 15: 1-37.</Citation>
</Reference>
<Reference>
<Citation>Hayhoe K, Stoner A, Yang X, Crow C, Swaminathan R, Scott-Fleming I, Ryu J-H, Gelca R, Swain S. 2013. Development and dissemination of a high-resolution national climate change dataset - final report. Reston, VA, USA: US Geological Survey.</Citation>
</Reference>
<Reference>
<Citation>Hegland SJ, Nielsen A, Lazaro A, Bjerknes AL, Totland O. 2009. How does climate warming affect plant-pollinator interactions? Ecology Letters 12: 184-195.</Citation>
</Reference>
<Reference>
<Citation>Herbison B, Polzin ML, Rood SB. 2015. Hydration as a possible colonization cue: rain may promote seed release from black cottonwood trees. Forest Ecology and Management 350: 22-29.</Citation>
</Reference>
<Reference>
<Citation>IPCC. 2000. Emissions scenarios. Cambridge, UK: Cambridge University Press.</Citation>
</Reference>
<Reference>
<Citation>Johnson WC. 1994. Woodland expansion in the Platte River, Nebraska - patterns and causes. Ecological Monographs 64: 45-84.</Citation>
</Reference>
<Reference>
<Citation>Johnson WC. 2000. Tree recruitment and survival in rivers: influence of hydrological processes. Hydrological Processes 14: 3051-3074.</Citation>
</Reference>
<Reference>
<Citation>Karrenberg S, Edwards PJ, Kollmann J. 2002. The life history of Salicaceae living in the active zone of floodplains. Freshwater Biology 47: 733-748.</Citation>
</Reference>
<Reference>
<Citation>Karrenberg S, Suter M. 2003. Phenotypic trade-offs in the sexual reproduction of Salicaceae from flood plains. American Journal of Botany 90: 749-754.</Citation>
</Reference>
<Reference>
<Citation>Kharouba HM, Ehrlen J, Gelman A, Bolmgren K, Allen JM, Travers SE, Wolkovich EM. 2018. Global shifts in the phenological synchrony of species interactions over recent decades. Proceedings of the National Academy of Sciences, USA 115: 5211-5216.</Citation>
</Reference>
<Reference>
<Citation>Knutti R, Sedláček J. 2012. Robustness and uncertainties in the new CMIP5 climate model projections. Nature Climate Change 3: 369-373.</Citation>
</Reference>
<Reference>
<Citation>Kominoski JS, Shah JJF, Canhoto C, Fischer DG, Giling DP, Gonzalez E, Griffiths NA, Larranaga A, LeRoy CJ, Mineau MM et al. 2013. Forecasting functional implications of global changes in riparian plant communities. Frontiers in Ecology and the Environment 11: 423-432.</Citation>
</Reference>
<Reference>
<Citation>Krabbenhoft TJ, Platania SP, Turner TF. 2014. Interannual variation in reproductive phenology in a riverine fish assemblage: implications for predicting the effects of climate change and altered flow regimes. Freshwater Biology 59: 1744-1754.</Citation>
</Reference>
<Reference>
<Citation>Kramer K. 1994. Selecting a model to predict the onset of growth of Fagus sylvatica. Journal of Applied Ecology 31: 172-181.</Citation>
</Reference>
<Reference>
<Citation>Kumar D, Kodra E, Ganguly AR. 2014. Regional and seasonal intercomparison of CMIP3 and CMIP5 climate model ensembles for temperature and precipitation. Climate Dynamics 43: 2491-2518.</Citation>
</Reference>
<Reference>
<Citation>Leavesley GH, Lichty RW, Troutman BM, Saindon LG. 1983. Precipitation-Runoff Modeling System - user's manual. US Geological Survey Water-Resources Investigation Report 83-4238. Denver, CO, USA: US Geological Survey.</Citation>
</Reference>
<Reference>
<Citation>Liang L. 2016. Beyond the bioclimatic law: geographic adaptation patterns of temperate plant phenology. Progress in Physical Geography 40: 811-834.</Citation>
</Reference>
<Reference>
<Citation>Lytle DA, Merritt DM. 2004. Hydrologic regimes and riparian forests: a structured population model for cottonwood. Ecology 85: 2493-2503.</Citation>
</Reference>
<Reference>
<Citation>Lytle DA, Poff NL. 2004. Adaptation to natural flow regimes. Trends in Ecology & Evolution 19: 94-100.</Citation>
</Reference>
<Reference>
<Citation>Magdaleno F, Fernandez-Yuste JA. 2013. Evolution of the riparian forest corridor in a large Mediterranean river system. Riparian Ecology and Conservation 1: 36-45.</Citation>
</Reference>
<Reference>
<Citation>Mahoney JM, Rood SB. 1998. Streamflow requirements for cottonwood seedling recruitment - an integrative model. Wetlands 18: 634-645.</Citation>
</Reference>
<Reference>
<Citation>Man RZ, Lu PX, Dang QL. 2017. Insufficient chilling effects vary among boreal tree species and chilling duration. Frontiers in Plant Science 8: e1354.</Citation>
</Reference>
<Reference>
<Citation>Markstrom SL, Regan RS, Hay LE, Viger RJ, Webb RMT, Payn RA, LaFontaine JH. 2015. PRMS-IV, the Precipitation-Runoff Modeling System, Version 4: U.S. Geological Survey Techniques and Methods, Book 6, Chapter B7. Denver, CO, USA: US Geological Survey.</Citation>
</Reference>
<Reference>
<Citation>Matos HM, Santos MJ, Palomares F, Santos-Reis M. 2009. Does riparian habitat condition influence mammalian carnivore abundance in Mediterranean ecosystems? Biodiversity and Conservation 18: 373-386.</Citation>
</Reference>
<Reference>
<Citation>Maurer EP, Wood AW, Adam JC, Lettenmaier DP, Nijssen B. 2002. A long-term hydrologically-based data set of land surface fluxes and states for the conterminous United States. Journal of Climate 15: 3237-3251.</Citation>
</Reference>
<Reference>
<Citation>McKown AD, Guy RD, Klapste J, Geraldes A, Friedmann M, Cronk QCB, El-Kassaby YA, Mansfield SD, Douglas CJ. 2014. Geographical and environmental gradients shape phenotypic trait variation and genetic structure in Populus trichocarpa. New Phytologist 201: 1263-1276.</Citation>
</Reference>
<Reference>
<Citation>McShane RR, Auerbach DA, Friedman JM, Auble GT, Shafroth PB, Merigliano MF, Scott ML, Poff NL. 2015. Distribution of invasive and native riparian woody plants across the western USA in relation to climate, river flow, floodplain geometry and patterns of introduction. Ecography 38: 1254-1265.</Citation>
</Reference>
<Reference>
<Citation>Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kubler K, Bissolli P, Braslavska O, Briede A et al. 2006. European phenological response to climate change matches the warming pattern. Global Change Biology 12: 1969-1976.</Citation>
</Reference>
<Reference>
<Citation>Morin X, Lechowicz MJ, Augspurger C, O'Keefe J, Viner D, Chuine I. 2009. Leaf phenology in 22 North American tree species during the 21st century. Global Change Biology 15: 961-975.</Citation>
</Reference>
<Reference>
<Citation>Moskat C, Fuisz T. 1995. Conservational aspects of bird-vegetation relationships in riparian forests along the River Danube: a multivariate study. Acta Zoologica Academiae Scientiarum Hungaricae 41: 151-164.</Citation>
</Reference>
<Reference>
<Citation>Nanninga C, Buyarski CR, Pretorius AM, Montgomery RA. 2017. Increased exposure to chilling advances the time to budburst in North American tree species. Tree Physiology 37: 1727-1738.</Citation>
</Reference>
<Reference>
<Citation>Nilsson C, Berggren K. 2000. Alterations of riparian ecosystems caused by river regulation. BioScience 50: 783-792.</Citation>
</Reference>
<Reference>
<Citation>Nilsson C, Brown RL, Jansson R, Merritt DM. 2010. The role of hydrochory in structuring riparian and wetland vegetation. Biological Reviews 85: 837-858.</Citation>
</Reference>
<Reference>
<Citation>Nord EA, Lynch JP. 2009. Plant phenology: a critical controller of soil resource acquisition. Journal of Experimental Botany 60: 1927-1937.</Citation>
</Reference>
<Reference>
<Citation>Olson MS, Levsen N, Soolanayakanahally RY, Guy RD, Schroeder WR, Keller SR, Tiffin P. 2013. The adaptive potential of Populus balsamifera L. to phenology requirements in a warmer global climate. Molecular Ecology 22: 1214-1230.</Citation>
</Reference>
<Reference>
<Citation>Palmer MA, Liermann CAR, Nilsson C, Florke M, Alcamo J, Lake PS, Bond N. 2008. Climate change and the world's river basins: anticipating management options. Frontiers in Ecology and the Environment 6: 81-89.</Citation>
</Reference>
<Reference>
<Citation>Parmesan C. 2007. Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Global Change Biology 13: 1860-1872.</Citation>
</Reference>
<Reference>
<Citation>Penuelas J, Filella I. 2001. Phenology - responses to a warming world. Science 294: 793-795.</Citation>
</Reference>
<Reference>
<Citation>Perry LG, Andersen DC, Reynolds LV, Nelson SM, Shafroth PB. 2012. Vulnerability of riparian ecosystems to elevated CO2 and climate change in arid and semiarid western North America. Global Change Biology 18: 821-842.</Citation>
</Reference>
<Reference>
<Citation>Poff NL. 1996. A hydrogeography of unregulated streams in the United States and an examination of scale-dependence in some hydrological descriptors. Freshwater Biology 36: 71-91.</Citation>
</Reference>
<Reference>
<Citation>Poff NL, Allan JD, Bain MB, Karr JR, Prestegaard KL, Richter BD, Sparks RE, Stromberg JC. 1997. The natural flow regime. BioScience 47: 769-784.</Citation>
</Reference>
<Reference>
<Citation>Poff NL, Olden JD, Merritt DM, Pepin DM. 2007. Homogenization of regional river dynamics by dams and global biodiversity implications. Proceedings of the National Academy of Sciences, USA 104: 5732-5737.</Citation>
</Reference>
<Reference>
<Citation>Polzin ML, Rood SB. 2006. Effective disturbance: seedling safe sites and patch recruitment of riparian cottonwoods after a major flood of a mountain river. Wetlands 26: 965-980.</Citation>
</Reference>
<Reference>
<Citation>Pomeroy KE, Shannon JP, Blinn DW. 2000. Leaf breakdown in a regulated desert river: Colorado River, Arizona, USA. Hydrobiologia 434: 193-199.</Citation>
</Reference>
<Reference>
<Citation>Regan RS, Markstrom SL, Hay LE, Viger RJ, Norton PA, Driscoll JM, LaFontaine JH. 2018. Description of the National Hydrologic Model for Use with the Precipitation-Runoff Modeling System (Prms). Techniques and Methods 6-B9. Denver, CO, USA: US Geological Survey.</Citation>
</Reference>
<Reference>
<Citation>Richardson AD, Keenan TF, Migliavacca M, Ryu Y, Sonnentag O, Toomey M. 2013. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agricultural and Forest Meteorology 169: 156-173.</Citation>
</Reference>
<Reference>
<Citation>Roberts AMI, Tansey C, Smithers RJ, Phillimore AB. 2015. Predicting a change in the order of spring phenology in temperate forests. Global Change Biology 21: 2603-2611.</Citation>
</Reference>
<Reference>
<Citation>Rood SB, Pan J, Gill KM, Franks CG, Samuelson GM, Shepherd A. 2008. Declining summer flows of Rocky Mountain rivers: changing seasonal hydrology and probable impacts on floodplain forests. Journal of Hydrology 349: 397-410.</Citation>
</Reference>
<Reference>
<Citation>Sacchi CF, Price PW. 1992. The relative roles of abiotic and biotic factors in seedling demography of arroyo willow (Salix lasiolepis, Salicaceae). American Journal of Botany 79: 395-405.</Citation>
</Reference>
<Reference>
<Citation>Scott ML, Auble GT, Friedman JM. 1997. Flood dependency of cottonwood establishment along the Missouri River, Montana, USA. Ecological Applications 7: 677-690.</Citation>
</Reference>
<Reference>
<Citation>Scott ML, Friedman JM, Auble GT. 1996. Fluvial process and the establishment of bottomland trees. Geomorphology 14: 327-339.</Citation>
</Reference>
<Reference>
<Citation>Scott ML, Miller ME. 2017. Long-term cottonwood establishment along the Green River, Utah, USA. Ecohydrology 10: e1818.</Citation>
</Reference>
<Reference>
<Citation>Shafroth PB, Auble GT, Stromberg JC, Patten DT. 1998. Establishment of woody riparian vegetation in relation to annual patterns of streamflow, Bill Williams River, Arizona. Wetlands 18: 577-590.</Citation>
</Reference>
<Reference>
<Citation>Sheffield J, Barrett AP, Colle B, Fernando DN, Fu R, Geil KL, Hu Q, Kinter J, Kumar S, Langenbrunner B et al. 2013. North American climate in CMIP5 experiments. Part I: evaluation of historical simulations of continental and regional climatology. Journal of Climate 26: 9209-9245.</Citation>
</Reference>
<Reference>
<Citation>Slavov GT, Leonardi S, Burczyk J, Adams WT, Strauss SH, Difazio SP. 2009. Extensive pollen flow in two ecologically contrasting populations of Populus trichocarpa. Molecular Ecology 18: 357-373.</Citation>
</Reference>
<Reference>
<Citation>Smith DM, Finch DM. 2016. Riparian trees and aridland streams of the southwestern United States: an assessment of the past, present, and future. Journal of Arid Environments 135: 120-131.</Citation>
</Reference>
<Reference>
<Citation>Stella JC, Battles JJ, Orr BK, McBride JR. 2006. Synchrony of seed dispersal, hydrology and local climate in a semi-arid river reach in California. Ecosystems 9: 1200-1214.</Citation>
</Reference>
<Reference>
<Citation>Stewart IT, Cayan DR, Dettinger MD. 2004. Changes in snowmelt runoff timing in western North America under a ‘business as usual’ climate change scenario. Climatic Change 62: 217-232.</Citation>
</Reference>
<Reference>
<Citation>Stewart IT, Cayan DR, Dettinger MD. 2005. Changes toward earlier streamflow timing across western North America. Journal of Climate 18: 1136-1155.</Citation>
</Reference>
<Reference>
<Citation>Stromberg J. 1998. Dynamics of Fremont cottonwood (Populus fremontii) and saltcedar (Tamarix chinensis) populations along the San Pedro River, Arizona. Journal of Arid Environments 40: 133-155.</Citation>
</Reference>
<Reference>
<Citation>Stromberg JC, Beauchamp VB, Dixon MD, Lite SJ, Paradzick C. 2007a. Importance of low-flow and high-flow characteristics to restoration of riparian vegetation along rivers in arid south-western United States. Freshwater Biology 52: 651-679.</Citation>
</Reference>
<Reference>
<Citation>Stromberg JC, Lite SJ, Dixon MD. 2010. Effects of stream flow patterns on riparian vegetation of a semiarid river: implications for a changing climate. River Research and Applications 26: 712-729.</Citation>
</Reference>
<Reference>
<Citation>Stromberg JC, Lite SJ, Marler R, Paradzick C, Shafroth PB, Shorrock D, White JM, White MS. 2007b. Altered stream-flow regimes and invasive plant species: the Tamarix case. Global Ecology and Biogeography 16: 381-393.</Citation>
</Reference>
<Reference>
<Citation>Stromberg JC, Patten DT. 1991. Flood flows and dynamics of Sonoran riparian forests. Rivers 2: 221-235.</Citation>
</Reference>
<Reference>
<Citation>Sun L, Kunkel KE, Stevens LE, Buddenberg A, Dobson JG, Easterling DR. 2015. Regional surface climate conditions in CMIP3 and CMIP5 for the United States: differences, similarities, and implications for the U.S. National Climate Assessment. NOAA Technical Report NESDIS 144. Washington, DC, USA: National Oceanic and Atmospheric Administration.</Citation>
</Reference>
<Reference>
<Citation>Thackeray SJ, Sparks TH, Frederiksen M, Burthe S, Bacon PJ, Bell JR, Botham MS, Brereton TM, Bright PW, Carvalho L et al. 2010. Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Global Change Biology 16: 3304-3313.</Citation>
</Reference>
<Reference>
<Citation>Thielges BA, Beck RC. 1976. Control of bud break and its inheritance in Populus deltoides. In: Cannell MGR, Last FT, eds. Tree physiology and yield improvement. London, UK: Academic Press, 253-259.</Citation>
</Reference>
<Reference>
<Citation>Tockner K, Stanford JA. 2002. Riverine flood plains: present state and future trends. Environmental Conservation 29: 308-330.</Citation>
</Reference>
<Reference>
<Citation>Vicuna S, Garreaud RD, McPhee J. 2011. Climate change impacts on the hydrology of a snowmelt driven basin in semiarid Chile. Climatic Change 105: 469-488.</Citation>
</Reference>
<Reference>
<Citation>Viger RJ, Bock A. 2014. GIS features of the geospatial fabric for national hydrologic modeling. Denver, CO, USA: US Geological Survey.</Citation>
</Reference>
<Reference>
<Citation>Visser ME, Both C. 2005. Shifts in phenology due to global climate change: the need for a yardstick. Proceedings of the Royal Society B: Biological Sciences 272: 2561-2569.</Citation>
</Reference>
<Reference>
<Citation>Vitasse Y, Francois C, Delpierre N, Dufrene E, Kremer A, Chuine I, Delzon S. 2011. Assessing the effects of climate change on the phenology of European temperate trees. Agricultural and Forest Meteorology 151: 969-980.</Citation>
</Reference>
<Reference>
<Citation>Way DA, Montgomery RA. 2015. Photoperiod constraints on tree phenology, performance and migration in a warming world. Plant, Cell & Environment 38: 1725-1736.</Citation>
</Reference>
<Reference>
<Citation>Xu L, Chen XQ. 2013. Regional unified model-based leaf unfolding prediction from 1960 to 2009 across northern China. Global Change Biology 19: 1275-1284.</Citation>
</Reference>
<Reference>
<Citation>Yamanaka T, Wakiyama Y, Keisuke S. 2012. Is snowmelt runoff timing in the Japanese Alps region shifting toward earlier in the year? Hydrological Research Letters 6: 87-91.</Citation>
</Reference>
<Reference>
<Citation>Yang DQ, Kane DL, Hinzman LD, Zhang XB, Zhang TJ, Ye HC. 2002. Siberian Lena River hydrologic regime and recent change. Journal of Geophysical Research: Atmospheres 107: e4694.</Citation>
</Reference>
<Reference>
<Citation>Zohner CM, Benito BM, Svenning JC, Renner SS. 2016. Day length unlikely to constrain climate-driven shifts in leaf-out times of northern woody plants. Nature Climate Change 6: 1120-1123.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Perry, Laura G" sort="Perry, Laura G" uniqKey="Perry L" first="Laura G" last="Perry">Laura G. Perry</name>
</noRegion>
<name sortKey="Bock, Andrew R" sort="Bock, Andrew R" uniqKey="Bock A" first="Andrew R" last="Bock">Andrew R. Bock</name>
<name sortKey="Hay, Lauren E" sort="Hay, Lauren E" uniqKey="Hay L" first="Lauren E" last="Hay">Lauren E. Hay</name>
<name sortKey="Markstrom, Steven L" sort="Markstrom, Steven L" uniqKey="Markstrom S" first="Steven L" last="Markstrom">Steven L. Markstrom</name>
<name sortKey="Perry, Laura G" sort="Perry, Laura G" uniqKey="Perry L" first="Laura G" last="Perry">Laura G. Perry</name>
<name sortKey="Shafroth, Patrick B" sort="Shafroth, Patrick B" uniqKey="Shafroth P" first="Patrick B" last="Shafroth">Patrick B. Shafroth</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000175 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000175 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31514239
   |texte=   Projected warming disrupts the synchrony of riparian seed release and snowmelt streamflow.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31514239" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020